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Analytical and computational techniques are developed to investigate the stability of 
converging shock waves in cylindrical and spherical geometry. The linearized Chester- 
Chisnell-Whitham (CCW) equations describing the evolution of an arbitrary pertur- 
bation about an imploding shock wave in an ideal fluid are solved exactly in the strong- 
shock limit for a density profile p(r)  - r-*. All modes are found to be relatively unstable 
(i.e. the ratio of perturbation amplitude to shock radius diverges as the latter goes to 
zero), provided that q is not too large. The nonlinear CCW equations are solved 
numerically for both moderate and strong shocks. The small-amplitude limit agrees 
with the analytical results, but some forms of perturbation which are stable at small 
amplitude become unstable in the nonlinear regime. The results are related to the 
problem of pellet compression in experiments on inertial confinement fusion. 

1. Introduction 
One of the critical limitations to achieving high compression in a spherical implosion 

is the degree of symmetry that can be maintained. This in turn has important impli- 
cations for target fabrication techniques and for laser or other driver designs, since it 
establishes the tolerances required in the symmetry of these components. 

An important issue for understanding imploding systems is the stability of a con- 
verging shock wave. This shock wave might be used, for instance, not only to compress 
the fuel, but also to provide the heating required to create a central ignition region. 
The final temperature achieved will depend on how nearly spherical t'he shock wave 
remains during the collapse process and the shape of the shock at  the time of reflection. 

A certain inherent stability of a shock wave results from the well-known fact that a 
shock wave with a smaller radius of curvature advances faster than one with a larger 
radius of curvature. Thus, the part of a perturbed shock front that initially lags behind 
will accelerate more rapidly owing to its smaller radius of curvature and so will tend 
to catch up with the remainder of the shock wave. However, the perturbation iiiay be 
unable to overtake the main shock, which is accelerating because of convergence, or it  
may be overdriven, i.e. the perturbation may overshoot the stable position. 

In  order to discuss stability, it  is necessary to define what is meant by stable (or 
unstable) behaviour. The usual definition of stability in terms of a growing or decaying 
mode amplitude does not adequately describe the situation in imploding systems. For 
example, the amplitude may not tend to zero as fast as the average radius, or the 
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FIGURE 1. Kink instabilities form when the main shock accelerates due to spherical convergence 
ahead of a perturbed portion of the shock which is unable to catch up in spite of its smaller 
radius of curvature. 

collapse time may be of the order of the period of oscillation of the mode. A more 
meaningful number for small-amplitude perturbations is the rate of growth (or decay) 
of the relative perturbation amplitude, i.e. the ratio of the perturbation amplitude to 
the radius of the zero-order symmetric collapse solution (Bernstein & Book 1978). 

Large initial perturbation amplitudes may not decay in the same way as smrtll- 
amplitude perturbations (Fong & Ahlborn 1979). One can define a radial instability in 
terms of the maximum deviation of the shock radius from the average radius 
( ( R -  R,,J/R,,). Another kind of instability (kink instability) occurs when a small 
portion of the shock necks off from the central region (figure 1). In general, we cannot 
speak of an imploding shock as being stable or unstable in a clear-cut sense. Rather, 
we can ask whether it retains an acceptable degree of symmetry after having collapsed 
to a volume sufficiently small for practical purposes. 

We have developed an analytic and computational model to investigate the stability 
of converging shock waves in cylindrical and spherical geometry. This represents an 
extension to smaller radii of the work of Fong & Ahlborn (1 979) on the linear stability 
problem. The model equations are described in the next section, followed by a linearized 
analytic solution, an account of the numerical model, a comparison of the numerical 
and analytic solutions, an analysis of nonlinear behaviour, and an extension to 
problems wit,h a varying density in front of the shock. 

2. Model equations 
The motion of a converging shock wave can be computed with great accuracy by 

considering only changes in the physical variables across the shock front, and ignoring 
the fluid motion behind the shock surface. The velocity of a shock front in a motionless 
undisturbed medium is normal to the front. It may therefore be treated as a locally one- 
dimensional motion in a channel whose boundaries are determined by the trajectories 
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of the shock front. These trajectories form imaginary ray tubes whose cross-sectional 
area is related to the Mach number by an equation derived by Chester (1954), Chisnell 
(1955) and Whitham (1957) (the CCW approximation). Butler (1956) made use of a 
similar technique. The equation may be found by substituting into the compatibility 
equation for the characteristic moving in the direction of shock propagation the fluid 
quantities determined by the Rankine-Hugoniot relations across the shock. Whitham 
(1958) has shown that this procedure, the simplest method of deriving the CCW 
approximation, is equivalent to solving the complete fluid equations while ignoring 
the influence of the characteristics which are overtaking the shock from behind. For 
this reason, it is most accurate for shocks of the self-propagating type where distur- 
bances more than a small distance behind never catch up with the shock, which is 
generally accelerating (Hayes 1968). 

The result of this model is an equation for the Mach number M of the shock as a 
function of the cross-sectional area A of the ray tube: 

where 
h ( M ) =  2 c + l + -  ) (l+L!s) ( M2 y + 1  

and 

where y is the usual adiabatic index. The cross-sectional area of the ray tube may be 
expressed in terms of the shock-front velocity by the kinematic relations 

A = - h . ( n x V ) x v ,  (4) 

i i=-(I-nn).(nxv)xv,  ( 5 )  

i. = v = nv, (6) 

where a dot over a variable denotes a derivative with respect to time, n is the unit 
vector normal to the shock front and r is the surface location. 

In numerical integration, equations (1)  and (5) are used to propagate the magnitude 
and direction, respectively, of the shock-front velocity in terms of time, substituting 
A from (4). Equation (6) then advances the shock-front position by integration of the 
velocity. For small perturbations about symmetric (cylindrical or spherical) shocks, 
however, solutions can be obtained analytically. 

3. Linearized analytic solutions 

strong shock limit M 
constant, in addition to being small, then (1)-(3) reduce to 

Since all collapsing shocks will eventually become strong, it is useful to analyse the 
1. If we assume that the sound speed ahead of the shock is 

AIA - hzi/v, 
where 

v =  Mla, and h =- 

(7) 
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n . ( n x V ) x v  = -vV.n. 

Thus, using (4) and (7)-( lo), we have 

( h / v ) ' = d / d t ( A / v )  = V . n = n x ( n x V ) . n ,  (11)  

+ = v( t ) ,  n = e,, n = 0,  (121, (131, (14) 

(15) 

where a = 1 (2) for cylindrical (spherical) geometry. Equations (12)-(15) can be 
rewritten as 

which only involves tangential derivatives of n. We first look at the zeroth-order 
symmetric solution, 

(A/+) '  = V .  (r/r) = a/r,  

Integrating this once yields 

and finally 

where R and w are constants. 
Suppose we now linearize the equation by assuming n = no+n,, v = vo+vl, 

r = ro+ g(ro, t ) ,  where the subscript 0 refers to the zeroth-order symmetric solution, 
and t.he subscript 1 refers to a small perturbation about this solution. From equation 
(5) we have 

Expanding the gradient operator 

+rulA = const., (17) 

r = R ( ~ t ) A l ( " + u ) ,  (18) 

n, = - (I-nono).(noxVo)x~.  (19) 

v = v o - ( v o ~ ) . v o +  ..., (20) 

(-hv,/vi) '= Vo.nl-(V,,~):(Vono). (21) 

from ( 1  1 )  we have to  first order 

From (19) after some manipulation we have 

n, - 5. Von = - (I - nono). Vo(no. 5). 
Here use has been made of the facts that no = e, and that 

Vono = Vo(ro/ro) = ( 1  -nono)/ro 

is a symmetric dyad. From equation (6) we have 

g = now,+nlv,. 

no.g = (no.%)' = v,, 

Hence taking bhe scalar product with no yields 

Thus equation (21) can be written as 

- -  ( hnii 5) ' = v0[n, - 5. von0l+ c. v,v,. no 

= -~,.[(I-~,nO).VO(nO.~)]+~.VO - . (3 

(23) 

(24) 

(25) 
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Now if we expand the perturbation in either cylindrical or spherical harmonics by 
assuming a sum of linearly independent terms of the form 

no. = [ ( t )  cos (m$) (cylindrical) (27 ) 

= [ ( t )  Pr(8)  cos (m$) (spherical), (27') 

each of which can be treated independently, and define the mode-number-dependent 
coefficient of the Laplacian by 

Q = ma (cylindrical) (28) 

= Z(Z+ 1) (spherical), 
equation (26) becomes 

Now using 
- (At/%) '  = Y(Q - W O .  

* d 5  [ = v  - 
Odr,' 

we have 

. .  

From equation (18) we have 
dlnv,  a - = -- 

dr, hr,' 

and after a little algebraic manipulation we get 

d2[ a d [  Q-a 
dr: roaro r: 

h - + - - + - [ = O .  (33) 

We now seek a solution of the form [ N 4, where p is in general a complex number 
which satisfies the indicia1 equation 

hp(p- l)+a/3+Q-a = 0, 
or 

(34) 

Since we seek the ratio of the amplitude of the disturbance to that of the zeroth-order 
solution we look at 

Since 
[ / r o  r{-l  = r ~ - ( ~ + ~ ) ~ t ( ~ + ~ ) r - 4 ~ I ~ l / 2 A .  (36) 

['r0 t - f f I ( A + o r ) ~ - 4 A Q l i / ~ A + ~ ) .  (38) 

To hl @A+a), (37) 

Equation (38) is identical with a result obtained by Butler in an unpublished report 
and quoted in Butler (1955). Whitham (1974) derived an equivalent formula valid for 
the cylindrical case by a different technique. 

For the lowest-order mode numbers /3- 1 is real and negative, indicating that the 
disturbance is geometrically unstable: 
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FIGURE 2. Oscillation frequency in In t of Spherical harmonic perturbation of a spherical 
front as a function of mode number for a perfect gas with y = 4 and y = 5. 

for 1 = 0 (spherical co-ordinates) or m = 0 (cylindrical co-ordinates), and 

shock 

for 1 = 1 (spherical co-ordinates) or m = 1 (cylindrical co-ordinates). For all mode 
numbers greater than unity /? is complex, and there is a factor growing with a power- 
law dependence N r-(A+a)/(2A) and a factor which is oscillatory in In ro with a frequency 
w = J(4hQ - (A + a ) 2 ] 4 / A .  The real part is always negative and independent of mode 
number, while the oscillatory part depends on the mode number: 

where 
[4AQ - ( A  + a)2]* 

2(A +a) P =  

In figure 2 we show the frequency in In t for the spherical harmonic perturbation as 
a function of mode number for two different ratios of specific heat, y = $ and y = $. 
Figure 3 shows the ratio r/ro between successive minima in the perturbation amplitude 
as it oscillates during collapse. The ratio may be chosen so that at some prescribed 
degree of compression the perturbation amplitude is a minimum. 
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FIGURE 3. Compression ratio between successive minima in perturbation amplitude 
during perturbed shock collapse as a function of mode number. 

4. Numerical integration 
In  order to assess the importance of nonlinear effects on the mode amplitude, the 

full nonlinear model equations were integrated with a code similar to that of Fong & 
Ahlborn (1979). The code advances the equations of motion of the shock front 

E = v, (43) 

dM Ma-1  
dA = A ( M ) M A ’  (44) 

either in plane co-ordinates (for cylindrical collapse viewed in a plane through the axis) 
or in cylindrical co-ordinates (for spherical collapse viewed in the equatorial plane). 

The equation for the cross-sectional area is not integrated directly, but areas are 
taken from the kinematics of the integrated ray tubes. A second-order-accurate, space- 
and-time-centred algorithm is employed to advance the grid locations and Mach 
numbers. Thus the problem of computing the shock shape is reduced to integrating 
a set of ordinary differential equations for the trajectories of a finite number of grid 
points located along the shock front, r gnd for their associated time-dependent Mach 
numbers. The integration is subject to a timestep limit analogous to the Courant 
condition for the one-dimensional fluid equations. This algorithm allows for the 
propagation of so-called shock-shocks (discontinuities in the slope and Mach number 
of the shocks predicted by the Whitham theory) in either direction, since the scheme 
is centred and symmetric. The equations for the shock surface are analogous to the 
one-dimensional Lagrangian equation of motion, where the shock position takes the 
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FIGURE 4. Comparison of analytic and numerical integration for self-similar spherical-shock 
collapee (Guderley problem). I, one-dimensional fluid code; A, numerical shock integration; 
- , strongshock similarity solution. 

place of the fluid position, the ray tube area takes the place of fluid density, and the 
Mach number takes the place of the fluid velocity. Thus many of the properties of one- 
dimensional motion, e.g. disturbances travelling along characteristic directions and 
nonlinear wave front stepening, show up in the shape of the shock surface. 

It was found necessary to redistribute the grid points to prevent unacceptably short 
timesteps as the mesh points crowd together near the shock-shock regions. The 
algorithm diffuses the grid points a small amount parallel to the shock front in such 
a way as to make the distances between points more nearly equal. This diffusion plays 
a role similar to that of an artificial surface tension at  interfaces. 

To test the accuracy of the numerical procedure described above, we compared the 
results of the calculation with those predicted by the self-similar solutions for the 
collapse of an infinitely strong shock due to Guderley (1  942). The self-similar solution 
predicts a shock position given by R = C( -t)q with 7 = 0.717 for a y = 1-4 gas 
according to Guderley. This gives a shock Mach number as a function of radius 

Thus 

The CCW approximation for large M gives 

(45)  

(46) 

(47) 
2 1-aZ ( 2 u + i ) M a + 1 d M  - dA dR -- 

A - 2%= (l+--) y + l  Q MZ-1 M 
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The exponents agree with the analytic Guderley solution to within 0.0006. In  figure 4 
we show the results of these models for the spherical convergence of a shock with an 
initial Mach number of 57 at a radius of 0-1 12 cm. The solid line is the analytic result of 
the Guderley solution. The triangles are the numerical results of the CCW approxi- 
mation using the code described above with 25 mesh points around a circle in cylindrical 
co-ordinates (describing a spherical implosion). Comparing the results along the axis 
with those perpendicular to the axis, we see that the shock remains spherical to better 
than 1 yo during the entire implosion and the Mach number reproduces the Guderley 
solution with less than 0.5 % error. 

5. Comparison of results of linearized model and nonlinear integration 
In  figures 5 and 6 we show the results of the analytic and numerical integration for 

mode numbers 2 , 4  and 8 for cylindrical and spherical collapse. The solid lines are the 
analytic formulae and the circles show the numerical results. To ensure that we begin 
in the linear regime an initial amplitude of the modes was chosen such that lJr0 = 
Since the system of equations is second order in the perturbed shock location, both the 
amplitude and the velocity of perturbation must be specified. For these cases the 
velocity was chosen to  be zero. This then uniquely determines the phase of the oscil- 
lation. The phase angle between the amplitude and the velocity is determined by the 
mode number and the specific heat ratios: 

9 =tan-'[ h - a  1. 
2(h + 4 1, 

(49) 

Agreement appears very good until the mode amplitude becomes greater than a few 
per cent. At this time nonlinear effects which can generate modes other than primary 
one drive the solution away from the linear result. Nonlinear steepening of the wave 
front generates higher-order modes which begin to dominate the solution. In  figure 7 
we can see the form this takes. This figure shows the successive wave-front shapes for 
an 1 = 8 spherical harmonic perturbation started with a large amplitude in order to 
show the effects of a large compression. As the shock collapses, the wave fronts begin 
to form cusplike-shapes in the region where the shock is left behind. For sufficiently 
large amplitudes a true cusp forms and the simple shock front no longer exists. It is 
replaced by a system of reflecting shock waves (see figure 8), which, however, are not 
treated in the present model. Whether regular or Mach shock reflection occurs depends 
on whether the angle between the shocks is less or greater than the critical angle 
( N 75' for y = 1.4, M = 00). In  most cases the angle in the cusp has been less than the 
critical angle. When this occurs a large portion of the shock energy can be left behind 
in the reflected shock system, thus decreasing the compressional effect of the imploding 
shocks. Solutions of this type are referred to below as having kink instabilities in the 
shock front. 
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FIQUFLE 6. Comparison of analytic (solid lines) and numerical (open circles) for maximum 
perturbation amplitude as a function of radius for cylindrical shock collapse at three different 
mode numbers: (a)  n = 2; ( b )  n = 4;  ( c )  n = 8. Deviation at small radii is due to nonlinear 
effects not in analytic model. 



Stability of imploding shocks in the CC W approximation 61 

10-3 10-2 1 .o 0.1 
RIRo 

10-2 

%I q 

10-3 

10-3 10-2 0.1 1 .o 
RIRo 

10-2 

3% 

10-3 

10-3 10-2 0.1 1 .o 
RIRo 

FIGURE 6. Comparison of analytic (solid lines) and numerical results (open circles) for spherical 
shock collapse for three different mode numbers: (a) n = 2; (b )  n = 4 ;  (c) n = 8. 
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FIGURE 7.  An example showing formation of cusp-like structure for large perturbation amplitudes 
in the nonlinear regime. Initial perturbation is a mode-number-8 Legendre polynomial with 
amplitude 10 yo of mean radius. 

FIGURE 8. In the nonlinear regime shock-shocks are formed which are the intersections of regular 
or Mach reflections of shocks. This results in potential loss of shock energy in the reflected shock 
system. 

6. Nonlinear modelling 
In order to investigate more carefully how these kinks form and propagate, we look 

at perturbation in the form of a simple spherical cap of radius smaller than the initial 
mean shock radius. This shock cap intersects the main shock with an angle 6 at a 
colatitude p, as shown in figure 9. For the purpose of this investigation the Mach 
number around the shock is assumed uniform at M = 10. In figure 10 we show the 
limits of stability for S as a function of /I. In addition we show the stability result in 
terms of dro/r0 aa a function of /3 (Sro/ro is geometrically related to 6 and 8). When 
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FIGURE 9. Initial perturbation of a spherical shock may be represented in terms of a cap at one 
pole with a radius of curvature smaller than the main shock. The perturbation magnitude BR, 
intersection half-angle B, and deviation angle 8 are related by geometry. 

either 8 or /3 becomes too large, the shock front is transformed into a nonlinear cusp- 
type regime instead of reverting to a more spherical form and oscillating. From 
figure 10 ( b )  we can see that this is related to the initial perturbation and is a function 
of /3. In  each case instability is defined to occur if a cusp shock is formed before 
r/ro < This arbitrary definition is necessitated by the fact that a11 perturbations, 
given sufficient compression, eventually evolve into the cusp-shaped form. Realistically 
speaking, however, compressions of 106 are more than sufficient to achieve the com- 
pression and temperature rise necessary for ignition in pellet fusion. 

Even for these single cap perturbations, oscillatory behaviour is apparent for 
sufficiently small initial amplitudes. Let us compare the radius of the finst minimum 
of the average deviation from a spherical or cylindrical shock for the cap perturbation 
with that for Legendre polynominal whose first zero forms the same angle aa the /3 for 
the cap perturbation. We see from figure 11 that at  least for smaller (i.e. larger I )  the 
oscillation period is nearly the same. This indicates that the oscillation period (i.e. the 
time or radius between minimum deviations from symmetric implosion) can be 
reasonably well predicted for arbitrary perturbations by matching to the lowest-order 
Legendre polynominal which fits the perturbation. In  figure 12 we show a stable caae 
where the behaviour about a nearly spherical implosion is oscillatory up to  a com- 
pression of ro/r = 10. In figure 13 we show an unstable case where a cusp is clearly 
forming after a single overshoot of the perturbation and a compression of ro/r = 4. 

From these results we see that two interdependent factors control when the non- 
linear kinks will begin to form. One is the wavelength of the perturbation and the other 
is the angle at which the perturbation intersects the mean radius. The smaller the 
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FIGURE 10. (a) Stability limits for the spherical cap perturbation are given as a function of the 
deviation angle 6 and intersection angle aa defined in figure 9. Instability is defined to occur 
when a kink forms before a compression radius R/Ro < 0-01. ( b )  Stability limits are shown aa a 
function of (6R/R), and 8. These two graphs are connected by simple geometric relations. 

wavelength, the larger the angle that is tolerable. Note, however, that this angle and 
the mode amplitude are not independent. In  terms of amplitude, the shorter the 
wavelength, the smaller the amplitude of disturbance that can be tolerated. 

7. Non-uniform undisturbed density 
Equation (1) was derived assuming a uniform density and temperature ahead of 

the shocks. The CCW methodology does not require the medium ahead of the shocks 
to be uniform, and we shall now investigate the effect a non-zero density variation in 
the undisturbed medium of the form p(r)  N r-q. However, for the shock to remain of 
the accelerating, self-propagating type requires a - K q  > 0, where K is defined in (54) 
and (56). While the characteristic exponent has an accuracy generally better than 
0.1 yo for the imploding shock problem, it is considerably less accurate (5-10 % errors) 
for the varying density cases (Sakurai 1960). Corrections to the CCW characteristic 
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FIQURE 12. Example of stable spherical cap perturbation where the solution oscillates and 
tends to become more spherical. No kinks appear before R/R, < 0.01. (a = 29", /3 = 39", 
6R/R = 0.2.) 
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FIGURE 13. Example of an unstable spherical cap perturbation where kink instability forms after 
one oscillation. (a = 39O, = 34", 6RIR = 0.26.) 

exponent have been computed for the implosion problem (Yousaf 1974) and density 
variation problem (Yousaf 1977) where self-similar solutions are available, but have 
not yet been computed for the general problem of self-similar implosion into a 
medium with variable density. 

The compatibility relation along the inward-directed characteristic is given by 

paad dA 
u + a  A 

dp+padu+- - = 0, 

while the Hugoniot relations behind a strong shock ( M  --f co) are given by 

where u is the fluid velocity behind the shock, p is the pressure behind the shock, p is 
the density behind the shock, and j5 is the undisturbed density. Differentiating the 
relation for p, we get 

(52)  
dp = -v2dp+-pvdv. 2 4 

Y + l  Y + l  

Combining equations (50)-(52), we have 

or 
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If we now write this in the form of (7) we have 

Using equations (a), (6) and (10) and the relation 

we have 
j5 = v.vp, 

(A/v) '  = V. n + Kn. V In p.  

(56) 

(57) 

Assuming a density profile of the form j7 - r-Q the zeroth-order symmetric equation 
becomes similar to (15), 

This has a solution analogous to (18), 

(A /+ ) *  = (a-Kq)/r. (58)  

r = R(ut)A/(A+a-w). (59) 

The effect of a positive q (density increasing toward the axis) is to cause the shock to 
accelerate more slowly than the q = 0 case. (A negative q will cause the shock to 
accelerate faster.) 

Again linearizing the equations as in Q 2, we have to first order 

( - Av,/v;)' = V,. n, - (V,g) : (V,n,) + [Knl. V, In p 
- no. (Vy) . V, lnp + no. V,(p. V,) lnp]. (60) 

Using vector manipulations similar to those in Q 2, we obtain 

- (An,. g/v$) = - V,. [(I - nono). V(n,. 5) ]  + 5 .  Vo(a/ro) + n,E : V,V,lnp. (61) 

The last term of (61) adds an additional term to (29), given by 

no5 : V,V,lnp = g(lnp)", 

- (A&:)' = (& - a + K q )  &:. 

(62) 

where the double prime indicates a derivative with respect to r,. Thus equation (61) 
becomes 

(63) 
Now from (53) we get 

and using (30) we have, after a little algebraic manipulation, 

d25 a-lcqdc +Q-a+Kq 
dri ro dr, T: 

A-+-- 5 =  0 .  

The resulting indicia1 equation is 

or 
h/3(/3-1)+(a-Kq)B+(&-a+Kq) = 0,  

/3 = {A-a+Kqf [(h+a-Kq)2--4h&]}~/2A. 

We note from this result that the effect of including density variation is found to 
first order by replacing everywhere the term a by a-Kq. That is, the acceleration 
normally due to the geometric factor a is modified by an additional term K q  related to 
the acceleration caused by a density variation. Positive q (density increasing toward 
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the axis) has the effect of reducing the acceleration due to geometric convergence. For 
sufficiently large q the acceleration vanishes. This situation, however, could lead to 
rather large errors if the wave system behind the shock were to catch up in violation of 
the CCW approximation. The ratio of the disturbance amplitude to the zeroth-order 
radius continues to satisfy c/ro - t-4, with the frequency appropriately modified. In 
terms of the zeroth-order radius, however, the growth becomes c/ro - r-(A+a-r'J)/(2A), 
A positive q thus decreases the relative growth of the shock perturbation as a function 
of the shock radius. 

8. Conclusions 
The CCW approximation, which appears to be very accurate for computing con- 

verging shock waves, predicts that the converging shock is always unstable, in the 
sense that the ratio of the perturbation size to the average radius diverges at the time 
of collapse. The cylindrical and spherical cases differ only quantitatively. The growth 
rate is only a power law, however, and therefore is not as serious as an exponential 
growth. For mode number greater than unity, the perturbations oscillate in In t with 
a mode-number-dependent period. The amplitude growth, however, is independent of 
mode number. 
For sufficiently large amplitude the linear behaviour breaks down and the solution 

develops nonlinearly into a kink form, where a reflected shock is left behind in the 
material, serving as a potential loss of shock energy in the collapsing shock. 

We are grateful to one of the referees for providing us with a copy of Butler's 
stability calculations cited in $3. 
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